
www.manaraa.com

Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works Faculty Publications

10-29-2018

A Survey of Software Metric Use in Research Software A Survey of Software Metric Use in Research Software

Development Development

Nasir U. Eisty
University of Alabama - Tuscaloosa

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Jeffrey C. Carver
University of Alabama - Tuscaloosa

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Numerical Analysis and Scientific Computing Commons, and the Software Engineering

Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation Recommended Citation
N. U. Eisty, G. K. Thiruvathukal and J. C. Carver, "A Survey of Software Metric Use in Research Software
Development," 2018 IEEE 14th International Conference on e-Science (e-Science), Amsterdam,
Netherlands, 2018, pp. 212-222. doi: 10.1109/eScience.2018.00036

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola
eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an
authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loyola eCommons

https://core.ac.uk/display/214368350?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/

www.manaraa.com

A Survey of Software Metric Use in Research
Software Development

Nasir U. Eisty
Department of Computer Science

University of Alabama
Tuscaloosa, AL, USA

Email: neisty@crimson.ua.edu

George K. Thiruvathukal
Department of Computer Science

Loyola University Chicago
Chicago, IL, USA

Email: gkt@cs.luc.edu

Jeffrey C. Carver
Department of Computer Science

University of Alabama
Tuscaloosa, AL, USA

Email: carver@cs.ua.edu

Abstract—Background: Breakthroughs in research increasingly
depend on complex software libraries, tools, and applications
aimed at supporting specific science, engineering, business, or
humanities disciplines. The complexity and criticality of this
software motivate the need for ensuring quality and reliability.
Software metrics are a key tool for assessing, measuring, and
understanding software quality and reliability. Aims: The goal
of this work is to better understand how research software
developers use traditional software engineering concepts, like
metrics, to support and evaluate both the software and the
software development process. One key aspect of this goal is
to identify how the set of metrics relevant to research software
corresponds to the metrics commonly used in traditional software
engineering. Method: We surveyed research software developers
to gather information about their knowledge and use of code
metrics and software process metrics. We also analyzed the
influence of demographics (project size, development role, and
development stage) on these metrics. Results: The survey results,
from 129 respondents, indicate that respondents have a general
knowledge of metrics. However, their knowledge of specific SE
metrics is lacking, their use even more limited. The most used
metrics relate to performance and testing. Even though code
complexity often poses a significant challenge to research software
development, respondents did not indicate much use of code
metrics. Conclusions: Research software developers appear to
be interested and see some value in software metrics but may be
encountering roadblocks when trying to use them. Further study
is needed to determine the extent to which these metrics could
provide value in continuous process improvement.

Index Terms—Survey, Software Metrics, Software Engineering,
Research Software

I. INTRODUCTION

Researchers in a number of scientific, engineering, busi-
ness, and humanities domains increasingly develop and/or use
software to conduct or support their research. Collectively,
we refer to the software (libraries, tools, and applications)
developed by these researchers as research software. These
researchers were first described in the literature as research
software engineers (RSEs) [1]. RSEs play a major role in
definining and designing the research software and seek recog-
nition for their efforts.

Researchers draw insights and make critical decisions, at
least partially, based upon results obtained from research
software. The correctness of the design and implementation of
this software is therefore of utmost importance. Low quality
software is likely to produce less trustworthy results and may

lead to incorrect research conclusions or engineering/design
decisions.

We have observed that research software engineers often
place less importance on traditional views of software quality
and maintainability than on other scientific goals. Examples
from the literature (Section II) confirm that there have been
many efforts to understand how software engineering (SE) can
help with the development and maintenance of research soft-
ware, especially related to the development process (including
requirements engineering, design methods, and testing) and
to code complexity (including refactoring). However, most of
these efforts have not led to research software teams that value
understanding and measuring software quality over time.

Software metrics are a critical tool for building reliable
software and assessing software quality, especially in complex
domains and/or mission-critical environments. The ultimate
goal of software metrics is to provide continuous insight into
products and processes. A useful metric typically performs
a calculation to assess the effectiveness of the underlying
software or process. The established literature distinguishes
individual measures from metrics. A metric is a function,
whereas a measurement is the application of metrics to obtain
a value. A detailed description of metrics is beyond the scope
of this paper. We refer readers to authoritative texts on the
subject [4].

Our experiences working with research software
developers–who claim to embrace software development
process–suggest the importance of two general classes of
metrics: in-process (related to development process) and
code-oriented (primarily code complexity). Furthermore, our
cursory analysis of the landscape of research software, much
of which is open source, confirms that many aspects of
process are present in these projects (e.g. version control,
issue tracking, testing, and documentation).

Therefore in this paper we look beyond our anecdotal expe-
riences in order to attain a deeper understanding of perceptions
about software metrics directly from research software devel-
opers. The primary objective of this study is to understand
research software developers’ knowledge and use of software
metrics. Ultimately, we desire to understand which metrics
should be included in a software metrics suite specifically
designed to support research software development.

www.manaraa.com

To gather this information, we developed and distributed a
survey to research software developers. The survey provided
respondents an opportunity to provide feedback on the impact
various type of software metrics have had on their respective
projects.

The primary contributions of this paper are:
• An overview of the use of metrics by research software

developers;
• Identification of software metrics of interest and value to

research software developers.
• The perceived prevalence of code complexity and whether

code complexity metrics are used to manage it.
The remainder of this paper is organized as follows. In

Section II we describe previous work to motivate a series
of research questions explored in this study. In Section III
we explain the survey design. In Section IV we provide the
detailed survey results. In Section V we discuss and interpret
the survey results. In Section VI we enumerate the validity
threats. In Section VII we draw conclusions.

II. RESEARCH QUESTIONS

In this section, we define our research questions based upon
a discussion of the related work. These research questions
drive the survey design.

A. Metrics

Research software developers often have a general interest
in metrics, including some that are not directly related to
software development. The literature describes a number of
these non-traditional metrics along with why those metrics are
important in the research software domain.

First, performance (speed of execution) is critical for a
segment of the research software developer population. There-
fore, it is not uncommon for research software developers
to have an interest in measures like FLOPS (floating point
operations/second) or I/O (reads or writes per second) and
network throughput (MB/second). The Top500 list1, which
ranks the performance of supercomputers while executing a
common benchmark, is an example of a research software
metric that is not common in traditional SE environments.
Even though the benchmark does not cover all aspects of
performance, the Top500 is an example of a metric that the
community perceives to be useful.

Second, beyond performance, many research software de-
velopers have a relatively new interest in green comput-
ing [6]. This interest increases the relevance of concepts like
energy costs and sustainability. Specifically, some research
software developers focus on energy efficiency and carbon
emissions [11].

Third, in some subdisciplines of research software (e.g.
simulation and modeling), developers find correctness and
reproducibility important. The lack of these characteristics can
decrease the “velocity of science.” There is a need for metrics
that allow developers to describe their results, along with the

1http://top500.org

acceptable level of error tolerance, so that other researchers
can reproduce the results [17].

Fourth, the failure rate of software, that is frequency with
which the software fails to produce a correct answer (or to
produce an answer at all), is critical for some types of research
software. For example, it is important for research software
developers to measure and understand the failure rate when
the software is targeted at at very large (i.e. 10,000 node)
computers [15]. Similarly, in computer vision software (a
subcategory of research software), it is important for research
software developers to measure how often their algorithms fail
to reach the correct decision for a given image [18].

Finally, research software engineers (discussed in the in-
troduction) seek recognition for their work on defining and
developing research software. Baxter et al describe two ends
of the research software spectrum that seek recognition:
(1) researcher-developers, who want to be judged on their
scientific output but are mostly producing code in support
of research and (2) research software engineers, who not
only produce code but produce tools that help others to do
research [1],.

Although these metrics are different than the metrics tra-
ditionally found in the general SE literature, they are highly
relevant to many research software developers. Therefore, they
help to inform our overall understanding of the types of
metrics that research software developers perceive to be useful.

Given the fact that we were not able to identify many papers
that discuss the use of traditional software metrics, prior work
by Carver and Heaton also helps to inform our research [2].
Although developers indicated they had sufficient knowledge
to do their jobs, a survey of research practitioners (from this
same work) revealed some interesting findings about software
engineering knowledge within the research community.

• Most research practitioners have little formal SE training
and tend to be self-taught.

• One-third of the respondents thought that overall the
research communities’ SE skills were not adequate.

• Familiarity of SE methods was higher than use of those
methods.

• Code reviews and agile methods were rarely used, sug-
gesting a lack of collaborative development practices.

• The knowledge and perceived relevance of agile methods
was low.

The last observation is interesting because agile practices
most closely resemble how the typical research team operates.
While these findings are about general SE and SE process,
they inform the study of SE metrics by suggesting that re-
search software developers may perceive they have significant
knowledge of metrics but may not use that knowledge as
frequently. Similarly, Carver and Heaton’s systematic review
found a number of claims made about the use of software en-
gineering practices in the development of research software [7]
including:

• There is a limited use of testing;
• Many research teams embrace (perhaps unconsciously)

an agile mode of development.

http://top500.org

www.manaraa.com

With this background to understand metrics usage and
SE knowledge within research software teams, we pose the
following research questions to gain a better understanding
of the knowledge and use of metrics by research software
developers:

• RQ1–What is the overall level of metrics knowledge and
use by research software developers?

• RQ2 – Which metrics are most commonly used?
• RQ3 – What is the relationship between knowledge of

metrics and their perceived usefulness?

B. Code Complexity

Beyond general metrics, research software developers are
interested in gaining an understanding of code complexity,
which is a nagging problem in research software. In our expe-
rience, research software often contains innate complexity. In
addition, developers often introduce additional complexity into
research software through various compiler pragmas, concur-
rent/parallel language features, and/or programming libraries
for code optimization. A good example of this complexity
is parallel matrix multiplication [14], a common assignment
in university courses. The algorithm is one of the relatively
straightforward research examples when written for sequential
processing. When scaling up to multiprocessors and clustered
systems, however, it requires much more complex code, some-
times of an architecture-specific nature.

First, code complexity is critical for a segment of the re-
search software developer population that focuses on trying to
make code run on parallel architectures. For example Munipala
et al. explored the use of SLOC and cyclomatic complexity in
a collection of diverse GPGPU software packages (a subset of
the research software community). They used the commercial
McCabe IQ tool to measure cyclomatic, design, and essential
complexity metrics in the software packages. While the results
of the study were inconclusive about whether SLOC or com-
plexity metrics were more prominent, the tools helped identify
potentially large and/or complex modules [12]. This example
shows that there is at least some interest in the research
software community for applying code complexity tools that
perform static analysis to identify potential complexity issues.

Second, module size is critical for a segment of the research
population. In another case study on complex open source
software, aimed at understanding both the implications of
structural quality and the benefits of structural quality analysis,
Stamelos et al. found that the average component size (a
dimension of code complexity but a separate metric) of an
application is negatively related to user satisfaction [16]. While
this particular paper did not focus directly on research soft-
ware, it is relevant to our work, because many research projects
are released as open source and are both large and complex in
nature. Similar to Munipala et al.’s work, which also included
module size, this result shows that both research and open
source communities have concerns about code complexity.

Based on this discussion, we pose the following research
questions to gain a better understanding of whether code
complexity is encountered by research software developers:

• RQ4 – Do research software developers perceive code
complexity as a problem?

• RQ5 – Is the frequency of complexity problems related to
the use of or perceived helpfulness of metrics?

III. SURVEY DESIGN

To answer each research question defined in Section II,
we enumerated a series of survey questions. We took care in
writing the questions to ensure their wording did not bias the
respondents. For example, we asked a free-response question
about metrics rather than providing a pre-determined list. We
grouped the survey questions by topics to help respondents
focus. Figure 1 shows the portion of the survey that we include
in this analysis. The figure contains the questions along with
the possible answer choices for each question (note ’[free
response]’ indicates a free-response question).

To reach a broad audience of research software domains
we used three solicitation methods. First, we sent the survey
invitation to a series of mailing lists that target developers
and users of mathematical, science, and engineering software.
Those mailing lists included: hpc-announce@mcs.anl.gov (a
mailing list based at Argonne National Laboratory that targets
researchers who use high-performance computing in their
work), the PI list for the US National Science Founda-
tion SI2 (Software Infrastructure for Sustained Innovation)
PI mailing list, and Carver’s list of previous participants
in the SE4Science workshop series (http://www.SE4Science.
org/workshops). Second, a collaborator sent the survey to
the mailing list of Research Software Engineers in the UK.
Third, we advertised the survey in a column in Computing
in Science & Engineering [3] where many research software
developers/practitioners would be likely to see it. In both cases,
we also asked people to forward the survey invitation within
their own networks. As a result of our solicitation approach,
we are not able to estimate the number of people who received
the invitation.

IV. RESULTS

In this section, we present the results of the survey orga-
nized around the survey themes. In the subsequent discussion
section, we use these results to answer the research questions.
In total, we received 129 responses to the survey. Note that
throughout this discussion, the survey questions refer to the
numbers in Figure 1.

A. Demographics

For each demographic, we give a brief explanation for
why the demographic is relevant and any implications the
demographic has for the survey analysis. We use these demo-
graphics in the next subsection to better understand the overall
results. The discussion of results is based upon the data from
the respondents who completed the survey (i.e. we exclude
partial responses).

http://www.SE4Science.org/workshops
http://www.SE4Science.org/workshops

www.manaraa.com

Fig. 1. Survey Questions

General Questions
GQ1 Which of the following best describes your project? [Scientific Computing Software, Computer Science

Software, General Application Software, Other]
GQ2 How many FTEs of developers are currently on your project? [free-response]
GQ3 Which best describes your role on the project? [Developer, Architect, Manager, Executive, Other]
GQ4 Which best describes the current development stage of your project? [Planning/Requirements Gathering, Initial

Development/Prototyping, Active Development/Unreleased Software, Active Development/Released Software,
Maintenance/No New Development Planned, Other]

Metrics Questions
MQ1 What is your level of knowledge about software metrics in general? [Very Low, Low, Average, High, Very

High]
MQ2 List any software metrics with which you are familiar [free-response]
MQ3 How often are software metrics useful to your project? [Very Low, Low, Average, High, Very High]
MQ4 Which specific software metrics are most useful to your project? [free-response]
MQ5 How often are software metrics used to evaluate individual productivity on your team? [Never, Rarely,

Sometimes, Most of the Time, Always]
MQ6 How often are software metrics used in the aggregate to evaluate overall team productivity? [Never, Rarely,

Sometimes, Most of the Time, Always]

Code Complexity Questions
CQ1 How often is code complexity a problem in your software? [Never, Rarely, Sometimes, Most of the Time,

Always]
CQ2 How frequently does your team use code complexity metrics? [Never, Rarely, Sometimes, Most of the Time,

Always]
CQ3 How often do code complexity metrics actually help your team to understand and reduce code complexity?

[Never, Rarely, Sometimes, Most of the Time, Always]
CQ4 Which specific code complexity metrics do you use? [free-response]

1) Project Types: The goal of this demographic is to
understand whether we reached the target audience. Question
GQ1 lists the possible responses. In the actual survey, we
provided examples to clarify the meaning of each option. The
fact that majority of the respondents indicated that they worked
on Scientific Computing Software indicates that the survey did
reach the target demographic (79.8% working on Scientific
Computing Software).

2) Project Size: In Figure 2 we show the distribution of
responses to the question about the number of FTSs currently
on the project (Question GQ2). Most respondents worked
on smaller teams. As smaller teams may be likely to use
fewer metrics, this distribution could impact the findings of
the study. Based on prior work by Carver and Heaton [2]
(see Section II-A), we know that many smaller teams at least
unconsciously use agile software process and therefore are
likely to choose the subset of software engineering practices
and metrics they find useful.

3) Project Role: A developer’s project role(s) could affect
his/her perception of software metrics (Question GQ3). Iden-
tifying the distribution of respondent roles provides two types
of insights: (1) it helps us judge whether the survey reached a
broad, diverse set of research software developers, and (2) it

Fig. 2. Number of Developers

allows us to examine whether people in different types of roles
favor different types of metrics. The results in Figure 3 show
that the respondents were skewed more towards technical roles
(e.g. developers and architects) than towards non-technical
roles. Note that because respondents could choose more than
one role, the total in the figure is larger than the total number
of respondents.

4) Project Development Stage: Project stage helps deter-
mine which types of metrics may be most useful. Question
GQ4 lists the choices for project stage. As we show in

www.manaraa.com

Fig. 3. Respondents’ Role on Project

Figure 4, the projects represented by the survey respondents
were overwhelmingly in the released stage. This result is
important because projects at that stage should have already
established metrics programs that they deem useful for moni-
toring development and early-stage maintenance.

Fig. 4. Project Stage

B. Overall Analysis

Regarding the respondents’ general knowledge of metrics
(Question MQ1), the majority indicated they had low or
very low knowledge of metrics (Figure 5). Regarding the
respondents’ overall perception of the usefulness of metrics
(Question MQ3), just under half of the respondents indicated
they never or rarely found metrics useful (Figure 6).

Fig. 5. Knowledge of Metrics

One would expect a relationship between general knowledge
of metrics and perceived usefulness of those metrics. To

Fig. 6. Perceived Usefulness of Metrics

TABLE I
PERCEIVED USEFULNESS OF METRICS VS. KNOWLEDGE OF METRICS

Knowledge
Very Low Low Average High Very High Total

U
se

fu
ln

es
s

Never 15 5 3 1 0 24
Rarely 6 12 8 4 1 31

Sometimes 2 6 9 4 0 21
Often 1 7 5 1 0 14

Always 0 1 4 3 0 8

Total 24 31 29 13 1 98

determine whether this relationship is present in our results,
Table I shows the comparison of the respondents’ general
knowledge of metrics (Figure 5) with their perception of the
usefulness of those metrics (Figure 6). A tau-c test for indepen-
dence (appropriate for comparing two ordinal variables) shows
that these two distributions are not independent (p < .01)
indicating that general knowledge of metrics and perceived
usefulness are related.

Next, we conducted a qualitative analysis of the specific
metrics that respondents indicated they knew (MQ2) and used
(MQ4) in their projects. In total, the respondents listed 89
unique metrics, indicating they were aware of a large number
of metrics. We grouped these 89 unique responses into the
following six high-level categories (The detailed list of metrics
can be found in the paper appendix):

• Code Metrics – includes those metrics that measure
complexity (e.g. McCabe, # of classes, and coupling)
and that measure other characteristics of code (e.g. #
of clones, and defect density).

• Process Metrics – includes metrics that are collected
over longer periods of time and provide insight into
the software development process (e.g. productivity, cycle
time, or # of commits).

• Testing Metrics – includes metrics that measure and
monitor testing activities by giving insight into test
progress, productivity, and quality (e.g. code coverage or
of tests).

• General Quality Metrics – includes metrics related to
desirable properties of software that are not easy to
measure as part of the development process or through
analysis of the source code (e.g. interoperability, porta-

www.manaraa.com

bility, or sustainability).
• Performance Metrics – commonly of interest for soft-

ware executing on high-performance computing plat-
forms, the metrics address execution time, storage (e.g.
RAM or disk space), or scalability (e.g. time vs. CPUs/-
cores).

• Recognition Metrics – includes metrics that measure
how a project or its developers quantify outside interest
in their work (e.g. citations or downloads).

It is interesting to note that in addition to the four categories
that are commonly found in the software metrics literature
(Code, General Quality, Process, and Testing), we identified
two categories of metrics (Performance and Recognition) that
are not found in the traditional software metrics literature.
These new categories are often of interest to research software
developers working in high-performance computing environ-
ments. Recognition is particularly timely as research software
developers are increasingly interested in being recognized and
receiving proper credit for developing research artifacts such
as software, tools, and libraries [5], [8], [9], [10]. Table II
provides an overview of the responses.

TABLE II
CATEGORIES OF METRICS USED

Category Number of Known Used
Unique Metrics (frequency) (frequency)

Code 24 94 17
General quality 14 23 16

Performance 13 41 33
Process 21 28 9

Recognition 5 15 8
Testing 12 48 24

Finally, in Figure 7, we show the results of survey questions
MQ5 and MQ6 asking whether research software teams use
metrics, for individual or team evaluation. As the figure shows,
the vast majority of the respondents indicated that metrics
were never or rarely used to evaluate individual or team
productivity.

Fig. 7. Frequency of using Metrics for Evaluation

Similar to the analysis above, we analyzed whether there
was a relationship between perceived usefulness of metrics
(Figure 6) and the use of metrics for evaluation (Figure 7).

For both individual and team productivity, the tau-c test for
independence showed the distributions were not independent
(p < .01). Once again, this result shows a relationship between
perceived usefulness of metrics and the likelihood of using
those metrics for evaluation.

C. Influence of Demographics

In this section, we examine whether the demographics
defined in Section IV-A affect overall knowledge of metrics,
overall perceived usefulness of metrics, knowledge of specific
types of metrics, or use of specific types of metrics. For
each demographic, we describe the analysis separately in the
following subsections.

To facilitate the analysis (and appropriately use the number
of data points we have), we divide the values for each demo-
graphic into two categories, as defined below. These divisions
do not result in equal sized groups, so in the following
analysis we normalize the data. First, for the influence of the
demographics on overall knowledge and overall perception of
usefulness, each respondent could give only one answer, so we
analyze the responses as percentages (e.g. the percentage of
respondents in the group that gave each answer). Second, for
the influence of the demographics on the knowledge and use of
specific metrics, each respondent could give multiple answers,
so we normalize the responses with the size of the group and
report the number of each type of metric per respondent (e.g.
how many code metrics were reported per person in the group).

1) Influence of Project Size: We grouped respondents into:
small teams (less than five participants) and large teams (five
or more participants). The analysis shows that respondents
from smaller projects appear to have less overall knowledge
of metrics (Figure 8) and see metrics as less useful (Figure 9)
than respondents from larger teams. Both of these results are
significant using a χ2 test with p-value < .001. This result
could be due to the typically smaller amount of resources
smaller teams have to devote to metrics. Note that in both
cases the responses are generally skewed leftward, which is
not suprising given the results in Figures 5 and 6.

Fig. 8. Influence of project size on overall knowledge of metrics

Turning to specific metrics, larger teams have knowledge
of more metrics in four of the six categories (Figure 10).
Conversely, use of metrics is more consistent between large
and small teams with two notable exceptions. Large teams use

www.manaraa.com

Fig. 9. Influence of project size on percieved usefulness of metrics

about 2.5 times as many code metrics as small teams and small
teams use about three times as many recognition metrics as
large teams.

Fig. 10. Influence of project size on known metrics

Fig. 11. Influence of project size on used metrics

2) Influence of Project Role: We grouped respondents into:
technical (consisting of developers and architects) and non-
technical (consisting of manager, executives, and other). Note
for this analysis, respondents can appear in both categories
if they gave both types of responses (see Section IV-A3),
resulting in total percentages greater than 100. The analysis did
not show any significant effect of project role on either overall
knowledge or overall perception of usefulness. The fact that
we allowed respondents to choose multiple roles in response
to GQ3 resulted in respondents who were in both categories.
While, given the nature of research software development, this
result is not surprising, it likely contributed to the lack of
significant findings.

3) Influence of Project Stage: We grouped respondents into:
released software (including those in released and maintenance
phases) and unreleased software. The analysis showed that
level of overall knowledge (Figure 12) and overall perception
of usefulness (Figure 13) differed significantly between the
groups (p-value < .01 on the χ2 test in both cases). Exam-
ining the distributions, we can observe that respondents with
unreleased software had more people with very low and more
people with high knowledge than those with released software.
The results for perceived usefulness mirror these results. This
result could be caused by respondents at different phases of
unreleased software viewing metrics differently.

Fig. 12. Influence of project stage on overall knowledge

Fig. 13. Influence of project stage on perceived usefulness

For knowledge of specific types of metrics, project stage
had very little differentiating effect. Conversely, for use of
specific types of metrics (Figure 14), respondents from unre-
leased software found performance metrics more useful while
respondents from released software found testing metrics more
useful.

D. Code Complexity

The survey respondents perceived code complexity to be
a problem. In Figure 15, we show the responses to survey
question CQ1. Most respondents indicated code complexity is
a problem at least sometimes. Interestingly, while respondents
considered complexity to be a problem, the respondents an-
swers to survey question CQ2 (Figure 16), the vast majority
said they never used code complexity metrics, with only a
small number using them more often than rarely.

www.manaraa.com

Fig. 14. Influence of project stage on specific metrics used

Fig. 15. Frequency of Code Complexity Problems

Fig. 16. Use of Code Complexity Metrics

Of those that used complexity metrics (e.g. rarely or above
in Figure 16), the responses to CQ3 indicated that the majority
found the metrics were never useful (Figure 17). Finally,
there was no significant relationship between the frequency of
complexity problems and the use or helpfulness of complexity
metrics.

V. DISCUSSION

In this section we discuss key insights related to each
research question.

RQ1–What is the overall level of metrics knowledge and use
by research software developers?

In general, the majority of respondents reported very low
to low knowledge of metrics, while just under half indicated
that metrics are rarely or never useful. However, respondents

Fig. 17. Usefulness of Code Complexity Metrics

were able to name so many SE-related metrics in the free-
form response questions. While the respondents reported items
in the free-response questions that were not metrics by the
traditional definition, they did report most of the metrics that
appear in classic metrics texts [4].

RQ2 – Which metrics are most commonly used?

Respondents reported performance and testing as the most
known and used metrics. The presence of performance met-
rics is reasonable given that many research teams use high-
performance architectures and computers to do their work.
The high use of testing metrics is a positive result because
our experience suggests that mean teams lack resources for
performing adequate testing.

One interesting result relates to code metrics. The results in
Table I show that respondents reported the most unique code
metrics and reported the highest frequency of knowing code
metrics across all six categories. Conversely, the reported use
of code metrics was dreadfully low compared with the ratio
between known and used for the other categories.

The data in the survey did not provide the type of informa-
tion necessary to explain why this result may have occurred.
Nevertheless, it is both interesting and potentially worrisome.
One potential explanation is that while respondents were aware
of many different code metrics, they did not believe that
these metrics were actually useful in their research software
projects. Further research is needed to better understand this
discrepancy and identify and necessary solutions that can
reduce the gap.

Based on the results, we make some additional observations
about the metric categories:

• Testing metrics – Respondents used testing metrics sec-
ond only to performance metrics. This result is encourag-
ing, considering their appearance in the SE literature [4]
and TDD [13].

• General quality – While these metrics do not always
correspond directly to methods established in SE liter-
ature, they are interesting because they shed light into
how research software developers view quality in general.
We were also encouraged to see interest in sustainability,
which is an area of growing importance within the
research software community [8], [9], [10].

www.manaraa.com

• Performance metrics – These metrics are clearly of
value on the types of systems typically used by research
software developers. When the software is written to run
on a high-performance computer, for example, lack of
performance is a negative characteristic.

• Process metrics – Respondents reported high usage of
metrics of interest to agile software developers. Given that
many of the responses came from small-to-medium sized
teams, most of these suggest the use of agile processes.

• Recognition – From a traditional SE perspective, this set
of metrics would be somewhat unexpected. Respondents
reported many metrics as being significant for addressing
recognition. The presence of these metrics reinforces the
current notion that developers of research software need
more and better ways to formally track and quantify their
contributions to research.

RQ3 – What is the relationship between knowledge of metrics
and their perceived usefulness?

In general, we found that as perception of the usefulness of
metrics increases so does the likelihood that research software
developers will use those metrics to evaluate individuals and
teams. This disparity suggests that research software devel-
opers may struggle to adopt metrics in their software unless
they are better informed about their merits. Based on our
results, we found that smaller teams tend to have stronger
negative perceptions of metrics. Among all metrics, however,
both small and large teams reported the greatest knowledge of
code metrics.

RQ4 – Do research developers perceive code complexity as a
problem?

Most survey respondents indicated that code complexity is
at least sometimes a problem. While this result was not entirely
a surprise, given our experiences of observing complexity
in research software, it was good to see respondents self-
reporting that this issue is worthy of attention. Furthermore,
this result suggests that the research community has significant
interest in code complexity but struggle to adopt relevant
metrics in their software projects.

RQ5 – Is the frequency of complexity problems related to the
use of or perceived helpfulness of metrics?

Although research software developers report code com-
plexity as problematic, they rarely or never consider complex-
ity metrics to be useful. This result is surprising (and somewhat
troubling), given the prevalence of code complexity problems.
Additionally, the results showed no significant relationship
between the frequency of complexity problems and helpfulness
of complexity metrics. We need further study to understand
whether the low use of complexity metrics is caused by their
perceived lack of relevance or by the lack of support for
those metrics in the programming languages research software
developers commonly use, or by some other reason.

VI. THREATS

In this section we discuss the threats to validity from the
survey.

A. Internal Threats

This survey faces two primary internal validity threats. The
first is the potential for introducing bias through the survey
design. Because the members of the target survey population
are not traditional software developers, it is possible that they
lacked the necessary knowledge to properly answer the survey.
To prevent introducing bias in this situation, we purposefully
phrased survey questions in a neutral manner (without provid-
ing the names or types of any metrics), thereby allowing the
respondents to reveal their own understanding of metrics.

The second potential validity threat is selection. It is pos-
sible that some survey respondents were not actually research
software developers. Although the vast majority of respondents
indicated that they are working on research software, some did
not. Given the nature of the research software domain, it is
possible that some of the survey respondents work on software
that supports research software (like middleware or tools)
rather than directly on research software itself. Nevertheless,
the number of responses (129) represents a relatively large set
of responses for a community that is likely smaller than other
communities traditionally surveyed in software engineering
research. Therefore, we find this threat to be minimal.

B. External Threats

The survey sample may not be representative of all research
software developers. Although we took great care to send our
survey to research software developers, due to the particular
mailing lists we used, it is possible that some segments
of this population, like those from US-based national labs
and HPC-related groups are over-represented in the sample.
These segments of the population are clearly research software
developers, but they may not represent the way all research
software developers think.

Furthermore, the respondents who chose to respond to
the survey may not be an accurate representation of all
research software development groups. For example, members
of corporate research software development groups may be
even more inclined to embrace more formal/defined software
processes. Conversely, smaller research software teams with
less formal support and resources may be less likely to use
well-defined software processes and the related metrics.

C. Construct Threats

It is always possible that survey respondents misunderstand
the survey questions. In our case, however, we went out of our
way not only to provide questions but to give clear directions
for how to respond to those questions, without biasing the
respondents.

The other primary construct validity threat is whether the
respondents understood the software engineering and software
metrics concepts in the same way as we intended them.
While we did not specifically evaluate this issue in the survey,

www.manaraa.com

previous surveys have shown that research software developers
generally understand SE concepts in the traditional manner.
Furthermore, based on the fact that respondents reported many
of the metrics traditionally included in the SE literature as well
as some that are specifically important in the research software
domain, we are reasonably confident that the questions were
clear.

VII. CONCLUSION

In this paper, we report on the results of a survey of
research software developers to assess knowledge and use
of software metrics. In all 129 respondents, most of whom
were true research software developers completed the survey.
The results showed that while research developers knew and
used metrics (in general), they did not as commonly use
traditional SE metrics in actual projects. Although research
teams report code complexity to be a nagging problem, the
research software developers who responded to the survey
only used code metrics on a limited basis on their projects
and generally do not perceive them positively. Conversely, the
survey respondents appeared to be relatively familiar with code
complexity metrics, based upon the fact that this category of
metrics represents the largest set of responses to the free form
questions about metrics.

Furthermore, the results show that research software devel-
opers are very familiar with and frequently use performance
and testing metrics. The use of performance metrics is logical
given that many research software developers develop math-
ematical or scientific algorithms that are expected to have
good performance or else risk not being used in real-world
applications.

The frequent knowledge and use of testing metrics is a bit
more surprising. One potential explanation for this observation
is that, according to the literature, many research software
projects unconsciously embrace agile processes, which em-
phasis test-driven development (TDD) as part of their process.
We need to conduct further study to understand more about
the software development process used by research software
development teams to identify which particular metrics would
be the most useful. Although the survey responses suggest a
significant number of teams that use agile processes, further
study would be required to understand the prevalence of agile
vs. other processes and how this influences metrics perceptions
and use.

In conclusion, this work shows that various software metrics
could be of value to research software development teams.
While work remains to be done to increase knowledge of
metrics within this community, we hope that this work can
be a first step toward helping research development teams
see the potential merits of using metrics that are based upon
the SE methods that they already employ in their projects
(development process and testing).

ACKNOWLEDGMENTS

We thank the survey respondents. Carver and Eisty acknowl-
edge support from NSF-1445344. Thiruvathukal acknowledges

support from NSF-1445347.

APPENDIX

SPECIFIC METRICS IDENTIFIED

This appendix provides more detail about the specific met-
rics that we grouped into the high-level categories in Table II.
The following list provides the specific metrics we grouped
into each category. The numbers in parentheses represent how
many respondents indicated knowledge of the metric and use
of the metric, respectively. That is (1,0) indicates one person
knew the metric, but no one actually used it. each metric was
mentioned as known and as used, respectively.

• Code Metrics: afferent couplings (1,0), binary size (1,1),
clarity (1,0), code evolution metrics (1,0), code to com-
ment ratio (2,0), cohesiveness (3,0), comment density
(1,1), coupling (7,3), cyclic dependency (1,0), cyclomatic
complexity (16,3), defect density (3,1), depths (1,0),
function points (4,0), Halstead programming effort (1,1),
information entropy (1,0), lines of code (LOC) (40,8),
McCabe (1,0), number of classes (1,0), number of clones
(2,0), number of modules (2,0), and program size (2,0);
and

• General Quality Metrics: accuracy (1,1), barrier of entry
(1,1), code language (1,0), encapsulation (1, 0), feature
usage count (1,0), formal correctness (1,1), interoperabil-
ity (1,1), mailing list activity (1,0), maintainability (4,3),
number of bugs (3,1), portability (3,3), reproducibility
(1,1), sustainability (1,1), technical debt (1,0), and us-
ability (3,3); and

• Performance Metrics: build time (1,1), compile time
(2,0), computing (1,1), CPU (1,0), execution time (12,9),
FLOPS (1,1), FLOPS per [US] dollar (1,1), memory
footprint (2,1), memory usage (5,5), performance (10,9),
resource usage monitoring (1,1), scalability (3,3), and
scaling with problem size (1,1); and

• Process Metrics: amount of documentation (1,0), app
launch count (1,1), authors/committers (1,0), cycle time
(3,3), development hours/story (1,1), development man
[person] years (1,0), documentation (1,0), feature de-
livered (1,0), files (1,0), forks (2,0), functionality (1,1),
GitHub (1,0), JIRA to track development (1,0), number
of commits (4,0), number of developers (1,0), produc-
tivity (1,1), recursive validation (1,1), Redmine project
management (1,0), reliability (1,1), request count (2,0),
size of ticket tracker (1,1), test failures (1,0), and volume
of mailing list traffic (1,0); and

• Recognition Metrics: citations (4,3), downloads (5,3),
number of users (4,1), number of projects adopting code
[code adoption] (1,1), and page views (1,0); and

• Testing Metrics: bug tracking and monitoring (10,4), code
coverage (17,12), days between failed tests (1,0), days to
fix failing test (1,0), number of passing tests (2,2), number
of platforms covered by tests (7,1), number of tests (1,1),
test time (1,1), testability (3,0), and testing (2,2)

www.manaraa.com

REFERENCES

[1] R. Baxter, N. Chue Hong, D. Gorissen, J. Hetherington, and I. Todorov.
The research software engineer. 9 2012. Digital Research 2012 ;
Conference date: 10-09-2012 Through 12-09-2012.

[2] J. Carver, D. Heaton, L. Hochstein, and R. Bartlett. Self-perceptions
about software engineering: A survey of scientists and engineers. Com-
puting in Science Engineering, 15(1):7–11, Jan 2013.

[3] J. C. Carver. Software engineering for science. Computing in Science
Engineering, 18(2):4–5, Mar 2016.

[4] N. Fenton and J. Bieman. Software Metrics: A Rigorous and Practical
Approach. Chapman & Hall/CRC Innovations in Software Engineering
and Software Development. CRC Press, Boca Raton, FL, 3rd edition,
Oct. 2014.

[5] C. Goble, J. Howison, C. Kirchner, O. Nierstrasz, and J. J. Vinju. Engi-
neering Academic Software (Dagstuhl Perspectives Workshop 16252).
Dagstuhl Reports, 6(6):62–87, 2016.

[6] R. R. Harmon and N. Auseklis. Sustainable it services: Assessing the
impact of green computing practices. In PICMET ’09 - 2009 Portland
International Conference on Management of Engineering Technology,
pages 1707–1717, Aug 2009.

[7] D. Heaton and J. C. Carver. Claims about the use of software engineering
practices in science: A systematic literature review. Information and
Software Technology, 67:207 – 219, 2015.

[8] D. S. Katz, S.-C. T. Choi, H. Lapp, K. Maheshwari, F. Löffler, M. Turk,
M. Hanwell, N. Wilkins-Diehr, J. Hetherington, J. Howison, S. Swenson,
G. Allen, A. Elster, B. Berriman, and C. Venters. Summary of the first
workshop on sustainable software for science: Practice and experiences
(WSSSPE1). Journal of Open Research Software, 2(1), 2014.

[9] D. S. Katz, S. T. Choi, K. E. Niemeyer, J. Hetherington, F. Löffler,
D. Gunter, R. Idaszak, S. R. Brandt, M. A. Miller, S. Gesing, N. D.
Jones, N. Weber, S. Marru, G. Allen, B. Penzenstadler, C. C. Venters,
E. Davis, L. Hwang, I. Todorov, A. Patra, and M. de Val-Borro. Report
on the third workshop on sustainable software for science: Practice and

experiences (WSSSPE3). Journal of Open Research Software, 4(1):e37,
2016.

[10] D. S. Katz, S. T. Choi, N. Wilkins-Diehr, N. Chue Hong, C. C. Venters,
J. Howison, F. J. Seinstra, M. Jones, K. Cranston, T. L. Clune, M. de Val-
Borro, and R. Littauer. Report on the second workshop on sustainable
software for science: Practice and experiences (WSSSPE2). Journal of
Open Research Software, 4(1):e7, 2016.

[11] S. McIntosh-Smith, T. Wilson, J. Crisp, A. A. Ibarra, and R. B. Ses-
sions. Energy-aware metrics for benchmarking heterogeneous systems.
SIGMETRICS Perform. Eval. Rev., 38(4):88–94, Mar. 2011.

[12] A. W. U. Munipala and S. V. Moore. Code complexity versus per-
formance for gpu-accelerated scientific applications. In 2016 Fourth
International Workshop on Software Engineering for High Performance
Computing in Computational Science and Engineering (SE-HPCCSE),
pages 50–50, Nov 2016.

[13] A. Nanthaamornphong and J. C. Carver. Test-driven development in
scientific software: a survey. Software Quality Journal, pages 1–30,
2015.

[14] M. J. Quinn. Parallel computing: theory and practice. McGraw-Hill,
Inc., 1994.

[15] B. Schroeder and G. Gibson. A large-scale study of failures in high-
performance computing systems. IEEE Transactions on Dependable and
Secure Computing, 7(4):337–350, Oct 2010.

[16] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris. Code quality
analysis in open source software development. Information Systems
Journal, 12(1):43–60, 2002.

[17] J. Vitek and T. Kalibera. Repeatability, reproducibility, and rigor in
systems research. In Proceedings of the Ninth ACM International
Conference on Embedded Software, EMSOFT ’11, pages 33–38, New
York, NY, USA, 2011. ACM.

[18] P. Zhang, J. Wang, A. Farhadi, M. Hebert, and D. Parikh. Predicting
failures of vision systems. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2014.

	A Survey of Software Metric Use in Research Software Development
	Author Manuscript
	Recommended Citation

	Introduction
	Research Questions
	Metrics
	Code Complexity

	Survey Design
	Results
	Demographics
	Project Types
	Project Size
	Project Role
	Project Development Stage

	Overall Analysis
	Influence of Demographics
	Influence of Project Size
	Influence of Project Role
	Influence of Project Stage

	Code Complexity

	Discussion
	Threats
	Internal Threats
	External Threats
	Construct Threats

	Conclusion
	Appendix
	References

